
 

 

  
Abstract— This paper presents a least complexity 

multithreshold decoding algorithm for self-orthogonal block codes 
(SOC). Proposed decoding method has been expanding on the base 
of the optimization methods of functional of many discrete 
variables. This paper reviews operation principles of multithreshold 
decoders (MTD), compares their efficiency with other decoder’s 
efficiency (Viterbi and turbo decoders, decoder for low-density 
parity check codes) and presents possibilities of the MTD for high-
speed codes, suitable for use in the optical channels. The results of 
fast and compact implementations of SOC Encoder and MTD 
architectures using Xilinx’s Virtex5 and Altera Stratix FPGA 
devices are presented and analysed.  
 

Keywords—iterative decoding, multithreshold decoder, 
optical communications, self-orthogonal codes. 

I. INTRODUCTION 
Currently various digital communication systems are 

applied for the exchange of information. Such systems are 
used for data transmission with wired and wireless 
communication channels, in which information can be 
distorted under the influence of various kinds of interference. 
It is unacceptable for many applications. Therefore, error-
correcting coding tools are used in any digital transmission, 
and its using reduces the proportion of uncorrected errors to an 
acceptable.  

Absolute necessity to use error-correcting coding has been 
elucidated for information channels for many decades ago. Use 
of codes reduces the need in signal power per 10 times. This is 
extremely important in many cases the use of digital radio. 
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This is especially important on board the spacecraft, when the 
increase in actual physical transmitter power is technically 
impossible.  

Currently develops optical communication systems (OCS) 
that provide transmission of large amounts of data at high 
speed around a hundred Gbit/s. Error-correcting coding is used 
to improve reliability of data transmission systems, the use of 
which allows to increase efficiency channel usage. The main 
requirement is to ensure for the schemes of coding and 
subsequent decoding OCS with a very high reliability (the 
probability of error of about 10-17) extremely fast decoding. 
Therefore, OCS can be applied only with the fastest decoders.  

In [1] the effects of the contributed noises for optical 
CDMA have been considered. These noises are phase-induced 
intensity noise (PIIN), shot noise and thermal noises. The 
system of 25 subscribers was simulated with modified 
quadratic congruence (MQC) codes at the C band for the 
upstream signal with channel spacing 50 GHz. The system 
shows good results in terms of the bit error rate (BER), and 
suppression of multiple access interference (MAI). As the code 
size is increased, both the complexity for the eavesdropper to 
detect high spectral chip pulse signal to noise ratio (SNR) and 
the system capacity are increase [1]. 

In [2] the design and application of low-density parity-check 
(LDPC) coding scheme for deep space communication under 
solar scintillation condition is studied.  Simulation results 
reveal that compared with the convolutional codes the 
proposed LDPC codes could obtain 2.4 db and 2.5 db coding 
gain at 8.4 GHz (X-band) and 32 GHz (Ka-band), 
respectively. Moreover, simulation results also show that the 
deep space communication system with LDPC codes is much 
less sensitive to scintillation fading that that with convolutional 
codes.  

A new word-length optimization method based on Monte 
Carlo simulation is proposed in [3]. In the proposed 
optimization method, and in the process of optimizing the 
word-length of the channel data, the statistical distribution 
results of variable node’s posterior probability data and check 
node’s extrinsic message are also obtained. The optimized 
word-length of variable node’s posterior probability data and 
check node’s extrinsic message is concluded by the statistical 
distribution result and the BER curves. Compared to the pure 
Monte Carlo simulation, the proposed method could reduce 
the amount of simulation work by more than 50%, and have 
the same word-length optimization results. 
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However, for realization enough effective decoding 
algorithms of LDPC codes are required the considerable 
calculated expenses i.e. a large number of operations that leads 
to very significant increase in time of coding and decoding. 
High complexity of devices of coding and decoding in these 
systems complicates these algorithms for work in real time and 
essentially limits speed of information transfer. 

Fastest decoders should only consist of a large number of 
the fastest microelectronic elements - large blocks of memory 
or long shift registers. They should not contain long chains of 
feedbacks, which greatly reduces the rate of advance data on 
such registers. Results in [4, 5] showed that the most suitable 
for high-speed systems according to these criteria are 
multithreshold decoders (MTD) for self-orthogonal block 
codes [6, 7, 8]. For MTD shown that they allow almost 
optimal (i.e., as well as then iterative exponentially complex 
code length methods) to decode even very long codes with 
linear complexity of implementation, that demonstrating good 
correction capability. 

In present paper some new important MTD properties are 
discussed. The other parts of the paper are arranged in the 
following way. Application of the iterative optimization 
procedures for search the best decision of a decoder is 
considered in Section II. In Section III a multithreshold 
decoding algorithm is described. Simulation results for MTD 
and other binary error correction methods are shown in 
Section IV. In Section  IV results a hardware implementations 
of the SOC Encoder and  multithreshold decoder are presented 
too. Section V gives the possibilities MTD for high-speed 
codes, suitable for applying in the OCS. Section VI shows the 
main conclusions of the paper. 

II. THE FUNCTIONAL GLOBAL OPTIMIZATION PRINCIPLE 
Development of methods for decoding error correction codes 

for a long time surprisingly had nothing to do with the 
optimization methods of functional of many discrete variables. 
However, decoding, i.e. search of the only one code word 
among an exponentially large number of possible messages, is 
natural to be considered from this standpoint.  

The vast majority of decoding algorithms that have been 
developed earlier did not use a well-known variety of powerful 
iterative optimization procedures to search the best decision of 
a decoder. Such procedures could easily be applied to search 
code words that are at the minimum possible distance from the 
received message.  

Note that the Viterbi algorithm commonly applied in 
communication technology and used to decode short 
convolutional codes by the likelihood maximum, does not also 
belong to a class of optimization procedures, since it directly 
searches for the optimal decision based on a very easy-to-
implement total search method. 

However, some decoding algorithms, in particular, threshold 
decoders already have almost precisely the properties that are 
needed to implement the full, effective and at the same time 
exceptionally simple iterative decoding procedures.  

 
 
Fig. 1 a special form of convolutional coding system, explaining 

new interpretation of the syndrome vector 
 
These procedures allow search global the functional extreme 

of a very large variable number. To confirm this, let us 
consider the simplest example of convolutional threshold 
coding/decoding system with the code rate R = 1/2 and the 
minimum code distance d = 3, shown in Fig. 1. 

As you can see, a simple majority decoder that corrects one 
error in this simple example contains an exact copy of the 
coder. This copy forms its own estimates of the code check 
symbols by informational code symbols taken from the 
channel, perhaps, with errors. These symbols appear at the 
point K of the decoder and then, after summation in the half-

adder with check symbols received from the channel V̂ , form 

a syndrome vector symbols S , which depends only on the 
channel error vector. Then these symbols are going to the 
decoder threshold element T from the syndrome register. 

The form of TD in the shown coding/decoding scheme 
allows specifying a simple way to organize proper 
optimization procedure, i.e. to find the best possible decoding 
decision. Let us turn to the fact, which has never been 
discussed relating to any linear code before: the decoder 
syndrome register contains the check symbol difference 

between the vector 
^^ ),( VIQ =  received from the channel 

with distortions and the code word CA , which informational 

symbols coincide with the informational part of the vector Q  
received from the channel. 

Hence, the total difference between the code word – the 

current hypothesis – decoder iA  decision on the transmitted 

code word and received noisy vector Q  will be in such a 
modified decoder of majority type, where TD will be added 
with only one new vector, which should always match the 

difference between the received vector Q  and IA  – current 
hypothesis of the decoder for informational symbols. This 
decoder will contain the current value of a total difference, and 
therefore, will allow measuring the full distance between the 
current decoder decisions contained in its information register 
and received vector. This distance should be reduced to 
minimum that will correspond to decision of the optimum 
decoder, which is usually achieved by the exponentially 
complicated total search methods. 

This approach to the problem of high-performance decoding 
is the basis of special iterative multithreshold decoders 
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(MTDs) being developed since 1970 [6, 7, 8], which are 
slightly different from classical TDs and just as simple to 
implement, as their prototype.  

For further discussion, it is also important that, in contrast to 
the situation shown in Fig.1, information part of vector Q 
should not be directed always to the input of the internal coder 
in the decoder (right part of Fig.1). It is possible to send any 
information flow to the input of this coder. Then this syndrome 
vector, of course, will be the difference in check symbols 
between the vector received from the channel and the same 
code word, which informational symbols were sent to the input 
of the internal coder. This enhanced understanding of the 
message syndrome will be actively used in the subsequent 
consideration of the MTD properties. 

Thus, changes that need to be done in the usual TD to 
convert it to MTD, are the next: decisions of all threshold 
elements about decoding symbols changes must be stored in 
the new additional difference register D, originally, of course, 
containing zeros. These decisions are then used by subsequent 
threshold decoder elements as an additional check for further 
correction of decoding symbols. This decoder already 

measures total distances between newer potential decisions iA  

and received vector Q . It changes decoding symbols so that 
each new decision of such MTD is always closer to vector 
received from the channel. This allows, in many cases, almost 
completely implement correcting capabilities of the codes 
used.  

III.  MULTITHRESHOLD DECODING 
Let’s describe operating principles of MTD for self-

orthogonal systematic block or convolutional code (SOC) [6, 
7, 8]. For implementation of operation of encoding SOC it is 
possible to use the elementary diagrams constructed on the 
basis of shift registers. The example of the diagram of the 
coder block SOC, set by an ancestor polynomial g(x) = 1+x 
+x4 + x6, is shown in a Fig.2. This code is characterized by 
parameters of code length, length of information sequence, 
code speed and the minimum code distance of n=26, k=13, 
R=1/2, d=5, respectively. The similar diagram is used for 
encoding convolution SOC.  

Let’s describe the principles of operation of the encoder on 
the example provided by scheme. Сheck bits generates in the 
encoder during operation in accordance with the following 
algorithm: 

Сheck bits generates in the encoder during operation in 
accordance with the following algorithm: 

1. Before starting to encode code block key K is in state 1. 
 
2. Information vector u = (u0, u1, …, u12) applied one 

character input shift register. As a result, information symbol 
u0 is located in cell 12, u1 - the cell 11, etc. 

3. Key K is transferred to state 2. 
4. For j from 0 to 12 to perform cyclic shift register, and 

then calculates the j-th checking bit  vj: 

∑
=

−=
4

1
13mod)(

k
gjj k

uv  .    (1) 

As a result of the algorithm generated a checking vector v = 
(v0, v1, ..., v12), which, together with an information vector 
defines the code word c = (u, v), which is transmitted through 
the channel. 

Let’s describe the principle multithreshold decoding of 
SOK. In a situation, where the decoder after transmission of a 
binary symmetric channel (BSC) rather than a distorted 
codeword noises message y = (u', v') of length n. First 
calculated syndrome s = Hy (here H - check matrix code) of 
the received message, and for each information symbol uj, 
1≤j≤k, stands set {sp} syndrome elements with numbers {p}, 
called checks relative to the character uj and containing error ej 
in this symbol. 

First, as in the usual threshold decoder is calculated 
syndrome s = Hy (here H - check matrix CSOC) of the 
received message, and each information symbol uj, 1 ≤ j ≤ k, 
find the set of elements {sp} syndrome with numbers {p} 
called checks against symbol uj and containing, as an error 
term ej in this symbol. 

In addition to the threshold decoder in MTD injected binary 
vector d of length k, called the difference, initially filled with 
zeros. The basic step is to decode that for arbitrarily chosen 
symbol uj computed likelihood function Lj, independent of its 
related inspections and j-th element of vector d: 

 

j
p

pj dSL
j

+= ∑
Θ∈

        (2) 

where dj - a symbol of the difference vector, related to 
decoded symbol uj (0 or 1); Sp - p-th element of the syndrome 
vector, which is part of a number of checks regarding decoded 
symbol uj; Θj - a set of of numbers of checks, controlling the j-
th information symbol. The example of MTD implementation 
for encoder from Fig. 1 is given in Fig. 3. 

Let us note again that, according to the MTD work rule, its 
difference register D initially contains only zeros. Thus, at the 
first iteration of error correction, MTD works just like a 
conventional TD. Only at subsequent decoding attempts, MTD 
starts to really take into account the contents of the 
corresponding cells in register D, as a result of which it keeps 
the properties to improve TD decisions at all changes of the 
message informational symbols. 

 
Fig. 2 encoder block SOC with R = 1/2, d = 5 and n = 26 
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MTD can be easily modified as the normal threshold 

decoder for adding checks in (2) with certain coefficients. 
Output bits define reliability for the decision made when 
dealing with multiple levels quantized soft modem solutions. 
Using of soft decisions of the demodulator can achieve 1.4 ... 
1.7 dB better results than using hard decisions of the 
demodulator. The expression (2) to calculate the likelihood 
function takes the form Lj  

 

jj
p

ppi wdwsL
j

)12()12( −+−= ∑
Θ∈

   (3) 

 
where {wp}– factors reflecting the reliability checks {sp}; wj – 
factor reflecting the reliability of the received symbol uj. 
Logarithm of the likelihood ratio can be used as the grade 
received from the channel symbols 
 

)|0(
)|1(

ln
jj

jj
j ruP

ruP
w

=

=
=                               (3) 

 
where rj – symbol received from the channel corresponding to 
the transmitted information symbols uj. Values wj. can be 
quantized into several levels to simplify the calculations.  

As far as the main ideas of multithreshold algorithm’s 
basis have been considered, let us turn to a strictly formal 
justification of their capabilities. 

Suppose we are given binary linear systematic block or 
convolutional code with the code rate R = k/n, where k – is a 
number of information symbols, n – the code length. 

After transmission over BSC without memory an optimum 
decoder that minimizes the average probability of decoding 
errors among many possible 2k of equiprobable code words 

}{A  choose a vector A~ , for which the Hamming distance 
|~| AQr ⊕=  (where Q  – received message, EAQ ⊕= ; 

A  – transmitted code word; E  – channel noise vector,  – 

modulo 2; |x| – Hamming weight of the vector x) would be 

minimal for the whole set of code words }{A . 
For proving convenience of the following propositions, let us 

represent any binary code vector X  of length n by a pair of 

vectors IX  and VX  of length k and (п–k) respectively, 
related to information and check parts of the vector: 

 
),( VI XXX = . 

Then, assuming that the check matrix of the code has a 

systematic form ):( IPH T= , we have the following lemma. 
Lemma 1. For each code vector A  and the received 

message Q  the following relation is true 

)),,(,( VI QDQHDQA ⊕=⊕  (4) 

where vector D  of the length k is defined by the relation 
.DQA II ⊕=  (5) 

Proof. Due to the code linearity 

),,0(
),(),(

VVI

VVVIVI

QAHAH
QAAAHQDQHS

⊕⊕=

=⊕⊕=⊕=
 

where I0  – is a zero information word. 

As 0=AH , whereas A  – code word, and 

VVVVI QAQAH ⊕=⊕ ),0( , as VV QA ⊕  is multiplied only by 

identity submatrix I of the matrix Н, then vector S  is 
.VV QAS ⊕=  (6) 

After substitutions in the right part (4) taking into account 
(5), we find that 

.),(),(),( QAQAQQDQADSD VVIIVV ⊕=⊕⊕⊕=⊕=  

Thus, the syndrome vector S , is actually (as it was shown in 
Fig.1), a difference in the check symbols between partially 
distorted message came out from the channel and the above-
defined code word.  

The lemma is proved. 
The essence of the lemma amounts to the fact that the 

difference AQB ⊕=  for any code word A  and received 

vector Q  is defined by a pair of vectors ),( SD . By 

definition, in 0=D  the vector S  is a usual syndrome of the 
received message Q : QHS = . For simplicity with 0≠D  

we will call S  a syndrome too, as this generalization seems 
natural and is not resulting in any contradictions.  

Searching all possible vectors A , we can find a vector A~ , 
which minimizes || B  and is OD decision. Unfortunately, total 
search decoding algorithms are too complex. Therefore, let us 
consider a decoding algorithm, which is very close to the 
known threshold error correction method and therefore is very 
easy to implement.  

1. Let the decoder at the first preparatory stage perform 
calculation and memorizing of a syndrome vector of the 

 

 
 

Fig. 3 Multithreshold decoder for SOC  
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received message S . After that, the decoding procedure is 
begun.  

2. Choose an information symbol ij and the usual sum of the 
syndrome component

kj
s  is calculated for it, containing as 

additives the error ej in decoding symbol ij (i.e. we need to find 
the sum of checks }{ jj Ss

k
∈ , where }{ jS  – is a set of checks 

related to the component ej, corresponding to a symbol ij) and 
symbol dj (vector D  component), which is also related to 
decoded symbol ij: 

∑
∈

+=
}{

.
jkj

k
Ss

jjj dsL  (7) 

Let us assume that initially 0=D , as before decoding, 
decoder memory has only received vector Q , because the 
decoder does not have any other more preferable hypotheses 
of the received message. 

Let us choose threshold T as equal to a half of all addends in 
(7). For SOC, this number is T = d/2 = (J+1)/2.  

3. Let finally all J = d–1 checks and ij and dj are inverted at 
Lj > T and remain unchanged at Lj ≤ T. 

4. The decoded information symbol is chosen, and decoder 
will return to step 2, unless the decision to terminate a 
decoding procedure is made.  

For the first decoding attempt the proposed procedure while 
all dj = 0, is similar to the usual algorithm for TD. Let us 
below refer to the decoder that implements the proposed 
algorithm, a multi-threshold decoder (MTD). When 
performing the basic 2…4 steps of decoder procedure, all k 
information symbols of the message can be searched in any 
order, and that is the essence of multithreshold method, 
multiple times,  up  to 5, 20 or more times. Of course, some 
decoder decisions can be incorrect for some symbols, and 
some of these errors can be corrected at the next iterations-
attempts to decode the same symbols. 

In this case, the following theorem is true. 
Theorem 2. The fundamental theorem of multithreshold 

decoding (FTMTD) [6].  
If at any j-th step of decoding MTD changes the information 

symbol ij, then: 
а) MTD finds a new code word

2A , closer to the received 

message Q , than the code word 1A , which corresponded to 
value ij prior to j-th decoding step: 

 
|;||||||| 2211 BQAQAB =⊕>⊕=  

b) After completion of the j-th step it is possible to decode 
any subsequent symbol ik, k ≠ j, so that its change will result in 
further approaching to the received message. 

Proof. According to Lemma 1, prior to the decoding of 
symbol ij it is true that 

 
|;||||||| 2211 BQAQAB =⊕>⊕=  

 
Where 
 

11111 ),,( DQAAAA IIVI ⊕==  
 
The weight of vector 

1B  before this step, equal to 

|||||| 111 SDB += , can be represented as an ordinary sum of 
weights W1 = L1j+X, where L1j is defined by (7) and is equal to 
the sum of checks and symbol dj at the threshold element, and 
Х – is the weight of the other components 1S  and 1D , not 
included in L1j. 

Consider code vector 
2A , differing from 

1A  only in one 
information symbol ij, and the respective difference 

QAB ⊕= 22 . Since 
1B  and 

2B  differ only in the 
components coming to the threshold element, then 

XLB j += 22 || , where 121 +=+ JLL jj , because due to the 
code linearity each check and dj are exactly equal to 1 in one 
of vectors iB . 

Since MTD changes ij, if L1j > T, it is essential for that to 
have L2 < L1 and, consequently, |||| 21 BB > , which proves 
item a) of the theorem. 

Further, it is obvious that if the symbol ij was not changed, it 
is possible to decode any other symbol ik, k ≠ j, as the 
conditions of the lemma are hold. In case of change ij in 
accordance with the rules of MTD functioning after decoding 
of ij equations 22 DQA II ⊕=  and ),( 22 VI QDQHS ⊕=  

hold. Here 
2D  differs from 

1D  in symbol dj, and changes 
through feedback from the threshold element of checks related 
to ij, those components of

1S  are inverted, in which 
2S  differs 

from 1S . Hence, we find that after changing ij for the 

previously defined vectors 2D , 2A  and 2S  there is the 
following equation  

 

11111 ),,( DQAAAA IIVI ⊕==  
 
similar to the one, occurring prior to the change of ij (by 
Lemma 1). Thereby for subsequent decoding steps and 

changes of symbols ik, k ≠ j, further strictly monotonic 
approximation to the message received from the channel Q  
will be implemented. 

The main MTD theorem is proved. 
This theorem implies that the MTD for each change of 

decoding symbols is getting closer to the received vector Q , 

thus finding new current and more likelihood vectors iA . 
MTD views and compares not an exponentially great amount 
of code words but only pairs of ones differing only in a single 
information symbol with one of the compared words being in 
the decoder. In case when the second code word turns out to 

be closer to vector Q , than the one in MTD, the decoder will 
switch over to that word to perform further comparison with 

the new intermediate vector iA . It is clear that in principle it is 
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possible to carry out a large number of decoding attempts for 
all code symbols. In that way convergence to the optimum 

decoder decision-vector A~  will be realized. It is crucial that 
MTD complexity remains the same as for customary TD: a 
linear, i.e. theoretically the lowest possible. 

Therefore, the main theorem of multithreshold decoding 
states that the simplest of known threshold procedures for each 
change of decoded symbols provides a strict convergence to 
the optimal decision, i.e., strict increase of the likelihood of 
each new MTD decision. In this case, complexity of the 
procedure for the message of the length k is not proportional to 
2k, but simply to k. There is no known similar proved property 
of strictly monotonic convergence to OD decision for any 
other decoding algorithms of low complexity. 

Although we have just proved a theorem for the MTD 
algorithm on convergence of its decisions to OD decision, we 
should not forget that this is an iterative application of the 
simplest threshold function to the decoded symbols. At high 
noise levels in the channel with random errors, at first, and 
subsequent iterations of decoding it is possible to have 
incorrect decision of the threshold element decoder in any 
individual decoded symbols. On the other hand, at all changes 
of decoded symbols, according to the proven results, this 
decoder only strictly improves its decisions by likelihood. 
However, this means that after incorrect decisions on decoded 
symbols in the next steps, MTD can correct its own errors 
made in previous iterations. In a high noise level, a part of 
initially incorrect decisions of MTD in the first iterations of 
the error correction can be significant. Even so, relative to the 
whole message received from the channel, each new decision 
of MTD, as it follows from the fundamental theorem, is always 
strictly more probable.  

Finally, let's note that the theorem does not implies that 
transition from one code word A  to another will continue for 

as long as |||| AQB ⊕=  will not be minimal, i.e. A  

becomes a decision of OD A~ . Thus, the MTD is not the 
optimal decoder. All of the following chapters of this book 
will be devoted to search for such codes and decoders for 
which the decoding process, even for high noise levels will 

actually almost always last as long as it reaches the vector A~ , 
decision of the total search optimum decoder. 

Let us further assume that MTD has reached the optimum 

decoder decision, i.e. there are symbols of vector A~  in the 
MTD information register. Then it is true that 

Corollary. MTD does not change the decision of an 
optimum decoder. 

Proof. If the MTD changes a single information symbol in 

vector A~ , then it would mean that there is another code vector 
∗A~ , which is closer to Q , what A~ , that is impossible, 

because, by definition, the closest to Q  word is a vector A~ . 
The corollary is proved. 
Thus, the stability of MTD decision corresponding to the 

optimum decision is shown: having reached that, MTD is 
going to stay there. It is very important as the algorithm 

implies an opportunity of multiple changes of the decoding 
symbols. 

It might also be noted that during the proving of the main 
MTD theorem the uniqueness of the decoded symbol ij was 
not used in any meaningful way. It follows that the decoding 
procedure can be applied to any group of information symbols. 

 

IV.  SOFTWARE AND HARDWARE IMPLEMENTATIONS OF THE 
MULTITHRESHOLD DECODER 

Let’s compare characteristics of MTD and other binary 
error correction methods in channels the additive white 
gaussian noise (AWGN) and a binary phase modulation (FM2) 
for the binary codes with a code rate R = ½ (Fig. 4). 
Theoretically, decoder can work with these parameters channel 
and codes when the signal/noise ratio equal of 0.2 dB (curve 
“C = ½” in Fig. 4).  

Convolutional codes have found most widespread practical 
use in actual communication systems. Viterbi algorithm [9] 
and various concatenated codes is often used to decode them. 
These methods emerged and developed in the 70s - 80s of the 
last century. Turbo [10, 11] and low density codes [12] are 
actively developed in recent times by foreign experts, the 
effectiveness of which is very high. For example, methods for 
decoding turbo codes recommended standard CDMA2000, 
provide characteristics represented by a curve «3) TCC 
CDMA 2000 (n=3600)».  

Small probability of error decoding can be achieved by low-
density codes of length a million bits when working less than 
0.1 dB capacity a Gaussian channel (LDPC (n=1000000)). 
Efficiency of decoders low density codes of shorter length is 
shown in Figure by curved lines «5) 802.16е LDPC(n=2304)» 
and «6) DVB-S2 LDPC(n=64800)». Unfortunately, all of these 
methods when working in a big noise still have a very large 
implementation complexity, making it difficult to practical use 
in high-speed data transmission and storage. Efficiency of 
MTD is presented for code with length of 20,000 bits, a code 
distance d = 9 and code rate R = 1/2 in Fig. 4 «Curve 7) MTD 
(n = 20000, d = 9)». MTD perform only a quick simple 
addition and comparison of integers, which makes them very 
attractive for use in existing and newly developed high-speed 
digital data transmission systems. 

 
Fig. 4 performance of error-correcting codes with R = 1/2 over 

AWGN channel and FM2 
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Developers are constantly looking for ways to increase its 
efficiency, despite the good correction capability provided by 
the original MTD algorithm.  

One way to approach the area of effective MTD work up 
your bandwidth is code selection, the least prone to error 
propagation (EP) decoding [6-8]. This property is reflected in 
the fact that after the decoder at work makes a mistake, the 
error probability in the following symbols increases 
significantly. In [6] proposed an approach to assess the 
susceptibility of code and build EP codes with minimum EP. 
Сodes are necessary to obtain the best performance, in which 
there are multiple branches of information and verification. 
Example encoder such code is shown in Fig. 5 containing two 
information and two checking branches.  

When using code such a structure can achieve significant 
reduction in the breeding of errors by reducing the number of 
common errors involved in decoding the various bits of 
information [8].  

When using code such a structure can achieve significant 
reduction in the breeding of errors by reducing the number of 
common errors involved in decoding the various bits of 
information [6, 7, 8]. In [13], the authors show that only by a 
proper choice of code and optimization of its structure without 
complicating decoding scheme can get additional energy gain 
of the order of 1 .. 1.5 dB. 

The next area is the work under these extremely efficient 
and extremely simple algorithms associated with the 
development of concatenated coding schemes. Cascading 
should only be with very simple codes to the overall 
complexity of the scheme has not increased. Focuses on this 
approach concatenated codes used in the MTD, with parity 
codes, Hamming codes and short self-orthogonal codes [14, 
15]. Analytical calculations and computer simulation results 
show, that application of such schemes allows you to bring the 
effective area of MTD bandwidth channel 1 .. 2 dB and reduce 
the probability of error decoding for 2 .. 5 orders of magnitude 
without a significant complication of the decoding scheme. 
This scheme allows to provide efficacy comparable with the 
efficiency of the best methods of error correction. The 
complexity of the cascade scheme decoder is very small. As a 
result of this concatenated MTD easy to implement as a 
conventional MTD decoder for speeds of 500 Mbit / s or even 
higher. 

Additional improvement in decoding performance self-
orthogonal codes possible with non-significant complication 
decoding algorithm [16]. Features presented one such decoder 
in Fig. 4 with curve "9) MPDnew". It illustrates the very high 
energy efficiency of the proposed algorithm at a distance of 
only 1.1 dB of channel capacity. The absolute majority of 
other error correction algorithms are in such high noise 
extremely difficult. Provided characteristics comparable or 
even better than many well-known characteristics of turbo 
decoders and LDPC codes. 

It turned out that MTD has another, no less effective way to 
speed up calculations. In fact, MTD as a conventional TD, 
mostly only counts the sums of checks. These are sums of a  

 
small number of short integers. Therefore, we can formulate 
conditions for decoder elements, parameters of codes used, 
modem, and threshold values in threshold elements that allow 
even at high noise levels to implement functions of summation 
and comparison in a threshold element by simple and rapid 
means.  

This problem has also been solved completely and 
unambiguously. Currently, for many types of codes it is 
possible to implement such threshold elements that will 
instantly give a decision at each shift step of registers of a 
convolutional MTD. This is the second level of parallelization. 
In some cases, it is necessary to adapt code polynomials of the 
used codes to requirements of a particularly simple 
parallelization and acceleration of threshold elements. 

As a result of implementation of the second-level 
parallelization of operations, MTD decoder turns into a device 
that somewhat does not perform any calculations for external 
observer. In other words, at each data shift step, threshold 
elements in MTD shift registers instantly create decisions on 
forthcoming changes of decoded symbols. 

But this means that such MTD somewhat does not made 
any calculations and all restrictions on performance of this 
decoder are connected only with a marginal speed of data 
movement through decoder shift registers and the number of 
parallel working registers in a decoder. Single-bit modulo 2 
adders, adders of small integers and standard shift registers are 
the fastest elements of digital technology. Therefore, simple 
estimates show that performance of such hardware MTD with 
the described approach is about three decimal orders of 
magnitude higher than that of other algorithms with a high 
noise level, and may range widely. This method of multifold 
MTD acceleration is patented in [17]. 

Fig. 6 shows the latest achievements in the field of high-
speed MTD-type decoders based Xilinx’s Virtex5 and Altera 
Stratix FPGA devices for the code rate R ≈ 1/2. Curve 1 refers 
to the development of convolutional MTD based on FPGA 
Xilinx at 100 Mb/s speed, which can be easily implemented at 
speeds up to 480 Mbit/s. It is much better than Viterbi 
algorithm (VA, curve 3) and only little differs from 
capabilities of a standard and highly efficient concatenated 
decoding scheme with VA and decoder of a Reed – Solomon 
code (VA+RC, curve 4), but significantly easier for them. 

Curve 2 corresponds to MTD with 40 decoding iterations, 
constructed based on Altera FPGA for speeds of the order of 

 
Fig. 5 encoder block SOC with two information and two checking 

branches 
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1.6 Gb/s [18]. Let's emphasize its most important feature: this 
conventional basic decoder scheme of this type, which is not 
even belong to concantenated structures, is much more 
effective in terms of noise level at which it operates than the 
previous schemes in Fig.6. Such high efficiency of this 
decoder is due to new developments in the search for actual 
codes with low error propagation at their correction, which, in 
turn, allowed move to a larger number of decoding iterations. 
It can be argued that such a scheme is certainly among the best 
nonconcantenated error correction procedures known in the 
theory and technique of coding. Of course, the success of 
MTD algorithm in such high noise levels in accordance with 
the fundamental code properties is only possible with a 
substantial increase in their length and decoding delay. 

The major advantage offered by MTD algorithms along 
with high efficiency is the possibility of extremely high 
performance hardware implementation. Since these algorithms 
allow their full parallelization, it allows decoding MTD in rate 
that matches the speed of shift registers (for the high-speed 
circuit design elements) in the selected element base. Currently 
no known other types of algorithms that would at least 
partially possessed similar properties. These features high 
speed MTD work you can always save at virtually any 
modifications and improvements MTD methods known to 
date.  

V. MTD APPLICATION TO IMPROVE THE RELIABILITY OF DATA 
TRANSMISSION IN THE OCL 

Let’s consider the possibilities MTD used in conjunction 
with high-speed codes, for example, suitable for applying in 
the OCS. Fig. 7 shows the characteristics of various MTD for 
convolutional codes with a code rate R = 4/5 in a Gaussian 
channel. Curve 1J shows the possibilities of the use of fairly 
complex MTD decoder of Japanese specialists [4,5]. These 
schemes present the feedback data transfer, markedly reducing 
speed of the circuit that these networks would be more high 
speed. Curve 2Dec given for MTD decoder using code, the 
lower bound optimum decoding which corresponds to the 
curve 2Opt. 

 

 
Simulation results shown that increasing of the ratio Eb/N0 

signal/noise values we seen decrease of error probability Pb 
(e) for MTD with such codes. MTD characteristics reached a 
level of optimum decoder at Eb/N0=3,7 dB or less. The results 
of these experiments suggest that the code with MTD will 
reach the optimum decoder level. It is determined by the lower 
boundary 2Opt with a noise level of 3.7 dB. Achieving a level 
of optimum decoding can be taken for granted, at least when 
Eb/N0=3,8 dB.  

The curve 3Dec corresponds to the option MTD application 
when not required to achieve conventional coding methods 
noncascade very small error probability at the output of the 
decoding apparatus. Curves 2Dec and 3Dec match MTD work 
at significantly greater level of noise than the decoder, the 
characteristics of which are given in the curve 1J. MTD 
represented by curve 3Dec, requires about 0.5 million code 
symbols delay decision in 25 iterations of decoding 
convolutional code.  

It is understood that the ability to operate at high noise level 
allows the use of all the algorithms with different 
modifications in MTD and various types of circuits cascaded. 
All results of the three options MTD shown in Fig. 5, in the 
case of cascade schemes error correction will be, of course, 
improved. However, even when the characteristics of the 
second code are initially noncascade better than in 
concatenated coding schemes obtained in [5]. Improvement of 
parameters third code will be particularly noticeable at staging 
because it operates at a higher noise level than the two 
previous. But when cascading all types always have to take 
additional measures in order to not greatly reduce the 
processing speed, as this violates the principle of instant 
correction of errors in the MTD as it moves through shift 
registers decoder. 

VI. CONCLUSIONS 
It is shown that a fundamentally new level of performance 

and processing speed compared with absolutely all known 
methods of error correction can be achieved by using different 
types of MTD algorithms. MTD algorithms allow us to solve  

 

 
Fig. 6 characteristics of standard VA and best MTD decoders in a 

Gaussian channel 
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Fig. 7 efficiency MTD for codes with a code rate R = 4/5 over 
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the problem to ensure high reliability of data transmission 
without any additional modification of these algorithms. Their 
use is equally simple and effective at the hardware and 
software implementation. 

MTD methods are truly unique algorithms capable of 
providing efficient decoding at high noise level. They perform 
a very small number of transactions and the highest levels of 
reliability of storing digital information and its processing 
speed in very large-scale databases, optical disks, etc. In all 
these cases very limited resources are used, such as simple 
microprocessors or the cheapest FPGA, which determines the 
ease and efficiency of the new methods of error-correcting the 
coding. 

Great deal of additional information on multithreshold 
decoders can be found on websites [19]. 
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